Introduction

The expression of amyloid precursor protein is especially high in the brain. Accumulation of β-amyloid peptide, which is processed from amyloid precursor protein, in the intra- and extracellular space is a neuro-pathological hallmark of Alzheimer’s disease. In sporadic Alzheimer’s disease very little is known about what causes β-amyloid peptide deposition in brain parenchyma. Growing evidence suggest that brain ischemia may play a role in the etiology of sporadic Alzheimer’s disease [1–7]. Transient brain ischemia results in an acute increase in β-amyloid peptide production [1–7] through induced β-secretase overexpression [8]. In an analogous way, complete brain ischemia due to *cardiac arrest* in rat’s results in deposition of different fragments of amyloid precursor protein in numerous brain regions mainly in the hippocampus [1, 7, 9]. In humans, an evident increase in β-amyloid peptide deposition was found in neurons in the hippocampus of patients who died following ischemic brain stroke [10]. Additionally, a neuropathological examination of patients brains after *cardiac arrest* have shown accumulation of β-amyloid peptide together with fibrillar and non-fibrillar β-amyloid peptide plaques development and strong staining for advanced glycation end-product receptors (RAGE) [11, 12]. In sum, ongoing interest in brain ischemia research has provided evidence showing that ischemia may be involved in the pathogenesis of Alzheimer’s disease [13]. The profile of pathology that is observed in an experimental rat model of global brain ischemia due to *cardiac arrest* shares a commonality with neurodegeneration processes in Alzheimer’s disease [1, 7, 9, 13]. The objective of this review was to further develop and characterize *cardiac arrest* model in rats [14], which provides practical way to analyze Alzheimer’s disease pathogenesis.
reactivity of β-amyloid peptide was showed in neurons and glial cells [16, 18, 19]. The reactive astrocytes with collection of β-amyloid peptide in cytoplasm are involved in the formation of glial scar [18, 19]. Reactive astrocytes with abnormal level of β-amyloid peptide deposition are involved in postischemic insufficient repair of host tissue including astrocytic death [1, 19–21].

Abnormal deposition for β-amyloid peptide has been shown in periventricular and subcortical white matter following brain ischemia [22, 23]. Possibly, aforementioned pathology is connected with leukoaraiosis formation after brain ischemia [23]. Extracellular accumulation of β-amyloid peptide ranged from multifocal very small dots to fibrillar amyloid plaques [1, 9, 11, 15, 19, 24]. Multifocal and widespread diffuse and fibrillar amyloid plaques were noted frequently in hippocampus, brain cortex, and subventricular in the ischemic brain [1, 7, 9, 15, 16, 22–25].

Blood-brain barrier after brain ischemia due to cardiac arrest

In short-term survival, following complete brain ischemia episode, blood-brain barrier microvessels presented plenty of abnormalities: increased numbers of endothelial microvillas, cellular invaginations, vasospastic events, microthromb formation and local permeability for uncellular and cellular blood components (Table 1) [1, 14, 26–28]. Instead, animals with long-term survival following brain ischemia episode showed chronic changes of blood-brain barrier for uncellular and cellular blood elements (Table 1). Permeability abnormalities were spotty and dispersedly and involved arterioles, microcirculation, venules and veins [24]. Blood-brain barrier alterations predominate in hippocampus, brain cortex and white matter.

| Table 1 – Staining for horseradish peroxidase (HRP), rat’s N- and C-terminal of amyloid precursor protein (NAPP, CAPP) and β-amyloid peptide (βA) and human β-amyloid peptide 1–42 (βA1-42) in perivascular space following ischemic brain 10 minutes brain ischemia due to cardiac arrest |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Groups** | **HRP** | **NAPP** | **βA** | **CAPP** | **βA1-42** |
| Control | - | - | - | - | - |
| Short-term survival | - | + | ++ | ++ | +++ |
| Long-term survival | - | - | - | - | - |
| **Cardiac arrest** | **++** | ++ | ++ | +++ | +++ |
| Short-term survival | **++** | **++** | **++** | **+++** | **+++** |
| Long-term survival | **+++** | **++** | **+++** | **+++** | **+++** |

The staining intensity: - no staining; ++ a single and diffuse areas; +++ a few and diffuse areas; +++ many strong and diffuse areas.

Other studies showed platelets aggregates of varying sizes within both arterial and venous brain vessels after ischemic injury [24, 27]. Some platelets were noted outside brain vessels in the perivascular space [24, 27]. Pathologically aggregating platelets like blood-brain barrier changes were local, random, widespread and dispersedly. Alterations of blood-brain barrier and platelets dominated in vessel bifurcations and branches. Current data suggest that platelets play a major role in posts ischemic injury not only through thrombus development, but also through involvement in neuro-inflammatory response. Platelets may contribute to the recruitment of inflammatory cells to brain tissue following ischemia as effect of short life and β-amyloid peptide source. Platelets pathology and microvascular insufficiency [29] was noted in patient’s brains early during the course of Alzheimer’s disease thus supporting a further link between related processes and Alzheimer’s disease [30].

In short-term survival following ischemic brain injury multifocal and widespread diffuse C-terminal of amyloid precursor protein, β-amyloid peptide and N-terminal of amyloid precursor protein deposits in the perivascular space were noted (Table 1) mainly in the hippocampus, white matter and brain cortex [1]. Multiple, abundant, extracellular deposits embraced or joined the blood-brain barrier microvessels. Perivascular deposits formed irregular, often asymmetric, well-delineated areas that frequently encircled microvessels, forming round, perivascular cuffs or halo [1]. Diffuse, broad, but faintly positive perivascular zones were also found. Endothelial and pericyte cells were stained, too. In long-term survival, following ischemic brain episode, perivascular deposits ranged from numerous small-diffused areas to irregular diffuse plaques [16, 24, 25]. Deposits in brain microvessels and around them stained only for β-amyloid peptide and C-terminal of amyloid precursor protein (Table 1) [16, 24, 25]. Strong staining in the perivascular space suggested diffusion of different fragments of amyloid precursor protein out of the vascular compartment. Especially staining for C-terminal of amyloid precursor protein in long-lived animals underscores the likely importance of the C-terminal of amyloid precursor protein in the neuropathogenesis of ischemia as in Alzheimer’s disease [31].

In other, our studies it was tested permeability for human β-amyloid peptide 1–42 by open blood-brain barrier after single or repeated complete brain ischemia (Table 1). In above studies widespread and multifocal accumulation of β-amyloid peptide 1–42 around blood-brain barrier microvessels was seen (Table 1) especially in hippocampus, brain cortex and occasionally in white matter [32–35]. Amyloid peptide permeability involved arterioles, microcirculation and venules. Endothelial, pericyte, glial and neuronal cells were filled with human β-amyloid peptide 1–42 [32–35]. Direct evidence that β-amyloid peptide crosses the ischemic blood-brain barrier and enters the brain parenchyma from the circulation is thus provided.

Cells death after brain ischemia due to cardiac arrest

In brain ischemia, neuropathology focuses on the hippocampus abnormalities because it is part of the brain selectively vulnerable to ischemic injury like in Alzheimer’s disease. Small areas of pyramidal neurons death were noted in the CA1 sector of hippocampus two days following ischemic injury in rats [15]. In these cases, complete disappearance of vulnerable neuronal cells in the CA1 area was observed from 7 to 14 days later. Moreover, about one third of brains following ischemic episode did not present complete disappearance.
of CA1 area in short-term survival period [15]. Above
animals developed death of all neurons of CA1 sector
in very late stages [15, 16, 18, 19]. Additionally, some
evidence presented distinct pathology in brain areas
considered to be resistant to ischemic injury such as:
CA2, CA3 and CA4 areas of hippocampus. Above sectors
showed acute postischemic changes in neurons at 1, 6,
9, 12 and 24 months following ischemic episode [15,
16]. Pyramidal neurons in hippocampus have very long
axons that connect different structures of the brain
together through many synaptic connections. Neuro-
pathology in pyramidal neurons may be of significant
relevance to Alzheimer’s disease development. Recently,
it has become recognized that neuropathological processes
in ischemic neurons continue well beyond the acute stage
[15, 16, 18]. Evidences indicate that brain ischemia
regardless of survival time is followed by acute neuronal
cells changes in brain regions belonging or not to
selectively vulnerable areas. In ischemic brain neuro-
degenerative changes in neuronal cells took the form of
“burn faintly phenomenon” [15, 18].

Current investigations showed that astrocytes apop-
tosis may contribute to pathogenesis of many acute and
chronic degenerative disorders like brain ischemia and
Alzheimer’s disease [21]. Common astrocytic reactions
that occur in the ischemic brain and Alzheimer’s disease
are cellular swelling, proliferation (astrocytosis) and
hypertrophy–hyperplasia (astrogliosis) [36]. It is widely
believed that reactive astrocytes at the early stage of
brain injury have a beneficial effect on neurons by
participating in several biological processes such as the
repair of the extracellular matrix, control of the blood-
brain interface, and trophic support of neurons. However,
whether prolonged reactive astrocytic response is ben-
ficial in neuronal recovery is still controversial. Some
studies showed following ischemic brain injury the
early import from brain tissue and circulatory system to
the astrocytes different fragments of amyloid precursor
protein and in the late stage the export from astrocytes
to the brain parenchyma of the neurotoxic C-terminal of
amyloid precursor protein and β-amyloid peptide [19,
37, 38]. We considered that in early stages astrocytes
through phagocytosis removed from neuronal cells and
their neighborhood neurotoxic fragments of amyloid
precursor protein. Next in astrocytes cytoplasm is going
degradation of various fragments of amyloid precursor
protein. In late stages when ischemic abnormal meta-
bolism of amyloid precursor protein took chronic form
and astrocytic metabolism beginning to be inefficient
we can observe at first disruption of astrocyte processes
[1, 19]. On other hand disruption of astrocytes processes
indicated degradation of different neurotoxic fragments
of amyloid precursor protein in the astroglial cytoplasm.
The late observations of astroglial behavior support the
idea that astrocytes produce amyloid precursor protein
and are a source of β-amyloid peptide. When above
process fully developed, at the same time atrophy of
brain started. In an early stage following brain ischemia,
it was noted vigorous incorporation of N-terminal of
amyloid precursor protein into the developing astroglial
scar around the ischemic area [4]. Functional recovery
following brain ischemia may reflect the balance between
degenerative processes and growth phenomena including
a neuroinflammatory reaction [39] leading to glial scar
development as well as the release of toxic elements like
the C-terminal of amyloid precursor protein. At early
stages of brain ischemia, the N-terminal of amyloid
precursor protein may be synthesized by cells derived
from the vascular endothelium, which became fragmented
after injury [4]. Over time, these cells change shape and
size to become incorporated into the glial scar in a close
spatial relationship with astrocytes and surprisingly
newly formed neurovessels that penetrated the scar.
Concurrently with the expression of scar-forming N-
terminal of amyloid precursor protein there is expression
of potentially toxic fragment like C-terminal of amyloid
precursor protein [40]. Evidence derived from mice
overexpressing the C-terminal of amyloid precursor
protein indicates that this fragment may promote synaptic
degeneration and neuronal death [41]. Some experiments
show that C-terminal of amyloid precursor protein
steadily accumulates in neuronal cells in the ischemic
region as the ischemia progresses the C-terminal of
amyloid precursor protein staining become increasingly
larger in the centre of ischemia even though the neurons
are dying and the ischemic centre becomes largely
acellullar [4]. The same study suggests that C-terminal
of amyloid precursor protein identified in microglia
cells could be due to the phagocytosis of dead, C-
terminal of amyloid precursor protein containing neurons
by microglia [4]. Most interestingly there are current
studies showing that astrocytes, but not microglia cells
can take up β-amyloid peptide [20, 42]. Additionally,
more recent work shows that C-terminal of amyloid
precursor protein induces the death of astrocytes whereas
the loss of neurons is a secondary consequence of
the neuronal dependence on astrocytes for antioxidant
protection [43]. The localization of some fragments
of amyloid precursor protein to astrocytes may be of signi-
ficant relevance to Alzheimer’s disease in which chronic
astrocytosis is thought to play a key role in the evolution
of amyloid plaques and in repairing host tissue through
development of glial scars. The study of astrocytes is
particularly important considering the co-existence of
the apoptotic death of neuronal cells and astrocytes in
ischemic brain [44] and neurodegenerative disorders.
Furthermore, significant astrocytes death occurs after
reactive astrocytosis and dying astrocytes kill neighboring
cells in ischemic brain injury.

Brain atrophy after brain ischemia due
to cardiac arrest

Gross examination of experimental brains performed
up to one-year following ischemic injury revealed
dilatation of brain ventricles and subarachnoid space
between and around the hemispheres [16, 24, 37, 38].
Additionally, atrophy of the dorsal hippocampus was
found following brain ischemic injury [15, 19, 32]. The
presence of new infarcts in experimental ischemic brain
injury model with very long survival of animals has
been shown [24]. Generally, cortex of brain was narrow
expressing increased neuronal density. White matter was
narrow and in some places with advanced spongiosis
Finally, atrophic brain is indicative of an active progressing neurodegenerative processes.

Functional consequences after brain ischemia due to cardiac arrest

In addition to ischemic neuropathological changes in brain neurobehavioral abnormalities have been observed [45]. Brain ischemia due to cardiac arrest does not result in long-lasting neurological deficits in animals [45]. Spontaneous recovery of sensorimotor function has been observed after ischemic brain injury [45]. Following brain ischemia, a locomotor hyperactivity has been noted [45] as in Alzheimer’s disease patients. The hyperactivity was positive correlated with increased neuronal changes in hippocampus [9, 46, 47]. Ischemic brain injury results in reference and working memory deficits [45]. Moreover, ischemic brain injury in experimental animals leads to progression spatial memory for one-year and more [45]. Neuro-cognitive impairment progression has been presented consistently following brain ischemia [45]. Moreover, data from repetitive brain ischemia in gerbils has been shown persistent locomotor hyperactivity, reduced anxiety and severe neuro-cognitive deficits [48]. Above abnormalities were connected with significant brain atrophy [15, 16, 19] associated with diffuse neuronal loss in the brain cortex and in CA1 sector of hippocampus [9, 16]. Alertness and sensorimotor capacities are affected for 1–2 days whereas the deficits in learning and memory seem to be rather long-lasting [45]. Taken together supporting evidences from both experimental and clinical studies indicated that the progressive neuro-cognitive activities decline could not be explained only by the direct contribution of the primary ischemic brain injury, rather a progressive consequence of the additive effects of the ischemic lesions, Alzheimer’s factors and aging [6, 49, 50]. This data suggests that ischemia enhances amyloid precursor protein mRNA expression, which may contribute to the progression of neuro-cognitive impairment in postischemic injury [3, 51, 52]. At last, the production of β-amyloid peptide in brain following ischemia increases and impairs the memory. The functional alterations were shown within the areas of selective vulnerability to ischemia and they precede the neurons death. Additionally, other regions of brain those are devoid of ischemic neuronal injury display functional abnormalities. These changes mainly seem to be due synaptic changes, because of connections neuronal cells within sectors with ischemically damage and death neurons.

Conclusions and future perspectives

The accumulation of β-amyloid peptide in neurons and in astrocytes probably is important in chronic ischemic brain mechanisms, which develop neurodegenerative pathways including postischemic dementia [1, 19, 51]. Moreover, the aforementioned protein accumulation suggests that above protein can start synaptic alterations and finally trigger retrograde neuronal cells death after brain ischemia episodes [16]. The above evidence shows that the chronic amyloid deposition after brain ischemia injury may start a secondary pathological progression that could worsen the ischemic intellectual brain outcome by further neurons death in vulnerable and resistant sectors of the brain [15, 16]. After ischemic brain episodes, β-amyloid peptide is produced because of neuronal injury in brain [2], and at the same time is taken from systemic circulatory system and probably appears its effects, influencing ischemic neuronal cells as dementia. It is accepted that β-amyloid peptide participates in neurons death in vulnerable and resistant areas of the brain [53]. The β-amyloid peptide is a neurotoxin peptide and entangles within an ischemic processes in glial cells, which lead finally neuronal and glial cells to death [54] and postischemic dementia with Alzheimer’s phenotype.

The main factors of Alzheimer’s disease pathology in ischemic brain are specific proteins abnormal metabolism, blood-brain barrier changes, different kinds of plaques and neuronal death with full-blown dementia. New data are suggesting that brain ischemia starts neuronal death and ischemic blood-brain barrier starts plaques development with detected hippocampus atrophy and increased volume of lateral ventricles [16], hemorrhagic damage of temporal lobe [55] finally ended with impairment in spatial working memory [45]. The data of Alzheimer’s phenotype following brain ischemia led us to the rival theory that Alzheimer’s disease etiology may be attributed to the ischemia in human brain.

In summary, we are presenting a good model for Alzheimer’s disease investigation using animal’s ischemic brains. By use of brain ischemia model, we may elucidate the pathogenesis of Alzheimer’s disease. Recent knowledge regarding the neuropathophysiology, neurochemistry and neuropathology of brain ischemia and Alzheimer’s disease indicates that similar processes contribute to neuronal death, amyloid accumulation and brain parenchyma disintegration.

Acknowledgments

This study was supported by founds from Mossakowski Medical Research Centre, Polish Academy of Sciences (T4 RP) and Polish Ministry of Science and Higher Education (project N N312233938 ABK). The paper was developed using the equipment purchased within the Project “The equipment of innovative laboratories doing research on new medicines used in the therapy of civilization and neoplastic diseases” within the Operational Program Development of Eastern Poland 2007–2013, Priority Axis I Modern Economy, Operations I.3 Innovation Promotion.

References

Alzheimer’s factors in postischemic dementia

Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity, J Neurosci, 2003, 23(12):5088–5095.

Corresponding author
Ryszard Pluta, Professor, MD, PhD, Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02–106 Warsaw, Poland; Phone +(48) (22) 60–86–540, +(48) (22) 60–86–469, Fax +(48) (22) 668–55–32, e-mail: pluta@cmdik.pan.pl

Received: July 10th, 2012
Accepted: September 1st, 2012