Phyllodes tumor: diagnostic imaging and histopathology findings

ALINA CRISTIANA VENTER1), ELENA ROȘCA1), LUCIA GEORGETA DAINA2), GABRIELA MUȚIU1), ADRIANA NICOLETA PIRTE3), DANIELA RAHOTĂ1)

1)Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Romania
2)Department of Neurosciences, Faculty of Medicine and Pharmacy, University of Oradea, Romania
3)Department of Dentistry, Faculty of Medicine and Pharmacy, University of Oradea, Romania

Abstract
Phyllodes tumors are rare breast tumors, accounting for less than 1% of all primary tumors of the breast. Histologically, phyllodes tumors can be divided into benign (60%), borderline (20%) and malignant (20%). The mammography examination was performed by means of a digital mammography system Giotto 3D Images; the ultrasound examination was performed through a GE Logiq P6 device and histological confirmation was possible after surgery or following the histological biopsy. We grouped the nine patients who presented clinically palpable nodules into two groups, namely: the six patients presenting histological benign results into Group I, and Group II where we included those with borderline and malignant histological results. Mammography performed in 77.7% revealed a well-circumscribed round or oval opacity or with contour lobules. Ultrasound examination was performed in all patients. Mammography and ultrasound have limitation in differentiating between benign lesion and phyllodes tumor. In the nine analyzed cases, mammographic and ultrasound examinations did not allow the differentiation into the three groups of phyllodes tumor. Histopathological examination is considered the golden standard for their diagnosis. Correlations between mammographic and microscopic aspects were inconclusive for determining the degree of differentiation, ultrasound changes could be correlated with the histopathological aspects.

Keywords: phyllodes tumor, mammography, ultrasound examination, histopathological features.

Introduction
Phyllodes tumor belongs to the fibroepithelial tumors group, which combines epithelial lesions with mesenchymal lesions [1, 2]. There is a group of circumscribed biphasic fibroepithelial tumors characterized by an epithelial component arranged in clefts surrounded by a hypercellular mesenchymal component that is typically organized in a leaf like pattern [3]. They are rare breast tumors, accounting for less than 1% of all primary tumors of the breast and 2.5% of fibroepithelial tumors [4, 5]. They occur at any age, with a higher frequency in women in the fourth decade of their life, with an early onset in Asian countries (average age 25–30 years) [6, 7]. Although only 5% occur in women less than 20 years, they are considered most common breast cancers in young patients [8].

Histologically, phyllodes tumors can be divided into benign (60%), borderline (20%) and malignant (20%) [2]; the criteria which dictates the aforementioned classification are as follows: the nature of the tumor margins, increased connective tissues, mitoses and atypical stromal cellular [9, 10]. There are two groups of phyllodes tumors after Farid Moinfar: low-grade tumors with “pushing” margin, mild cytological atypia (<3 mitotic figures/10 HPF – high-power fields) – it has potential for local recurrence, but it is very unlikely to metastasize; and high-grade (malignant) tumors (malignant phyllodes tumors and cystosarcoma phyllodes) infiltrating or pushing margin, moderate to severe nuclear atypia, >3 mitotic figures/10 HPF [2, 3].

According to the literature, mammography and ultrasound are not able to distinguish benign from malignant lesions [11, 12]. Yabuuchi et al. believe that some magnetic resonance (MR) features may suggest the phyllodes tumor histology [13]. However, the exact histological nature cannot be established based on MR breast appearance [14].

Aim
We report the cases of nine patients with breast nodules, examined in the Department of Imaging, Emergency County Hospital, Oradea, Romania, presenting their mammographic and ultrasound aspects in conjunction with their histopathological aspects.

Materials and Methods
The mammography examination was performed by means of a digital mammography system Giotto 3D Images, practicing the two standard incidents, i.e., CC (craniocaudal) and MLO (mediolateral oblique); the ultrasound examination was performed with a GE Logiq P6 device with a 7–13 MHz linear transducer and elastography option, according to classical technique of breast examination.

The biopsies were taken in the Department of General Surgery, Emergency County Hospital, Oradea.

We had performed the histological examination in the Department of Pathology of the same Hospital by using specimens from incisional biopsy (three cases) and from surgery (excisional biopsy in six cases).
The fresh specimens were fixed in 10% neutral buffered formalin for at least 12–24 hours. The excisional biopsies were oriented, inked (for resection margins) and gross examined. We used the semiautomated Leica TP 1020 tissue processor, and we embedded samples in paraffin. The 5 μm sections were made using a manual HM 325 rotary microtome. The slides were stained with classical Hematoxylin–Eosin (HE) technique and then examined with Nikon Eclipse E600 light microscope. The pictures were taken using Nikon Coolpix 4500 camera.

The Informed Consent of Patient is written on the “Medical document of biopsy”.

We have the agreement of Medical Ethics Commission.

The patients were submitted to surgical operation in the Department of General Surgery, Emergency County Hospital, Oradea.

Results

The nine women aged 19–72 years had an average age of 45.5 years. All presented clinically palpable nodules, six (66.6%) of them were benign phyllodes tumor, two (22.2%) of them were borderline tumors and one was malignant. We grouped the nine patients into two groups, namely: the six patients presenting histopathological (HP) benign results into Group I, and Group II where we included those with borderline and malignant HP results.

Mammography performed in seven (77.7%) patients revealed a well-circumscribed round or oval opacity in four cases or with lobulated contour in three cases (Figures 1–3).

Ultrasound examination was performed in all patients. In the group of benign lesions, which presented a 3.6 cm average size, the appearance was round or oval, homogeneous, hypoechogenic lesion, going in parallel, with the posterior acoustic enhancement, with circumscribed margins and with increased intralesional vascularity (Figures 4–6).

In the group of malignant lesions of 4.8 cm average size, ranging 3.5 to 7.5 cm, hypoechogenic lesion appearance was irregular with micro-lobules edges and heterogeneous echotexture presenting cystic or necrotic degeneration predominant areas, and with hyperintensity at Doppler examination (Figure 7).
Phyllodes tumor: diagnostic imaging and histopathology findings

Histologically, phyllodes tumors are composed of lactiferous ducts lined by epithelial and myoepithelial cells surrounded by a stromal spindle cells with monomorphic nuclei and rare mitoses, “leaf-like” stroma protruded into cystic spaces (ducts) and more cellular around ducts. They are myxoid areas, areas with hyaline at stromal level. Bizarre cells may be present yet not a sign of malignancy. In the literature, there have been reported areas of fibrous, cartilaginous, bone tissues and/or muscle in stroma.

The three categories – benign, borderline and malignant – have characteristics by stromal cellularity, cellular pleomorphism, mitotic activity, margins, percentage of metastasis and relapse rate.

There are two groups of phyllodes tumors: low-grade tumors with “pushing” margin, mild cytological atypia (<3 mitotic figures/10 HPF) (Figures 8–10); and high-grade (malignant) tumors (malignant phyllodes tumors and cystosarcoma phyllodes) infiltrating or pushing margin, moderate to severe nuclear atypia, >3 mitotic figures/10 HPF (Figure 11).

The borderline group of tumors is characterized by microscopic invasion areas around the margins edges, 2–5 mitoses/10 HPF, moderate stromal cellularity, heterogeneous hypocellular areas (Figure 12).
Discussion

Imaging and histopathological features

At the mammography, phyllodes tumor usually manifests as a round, oval or multilobate shaped, calcifying, fine edged lump. Tumor sizes vary from small tumor to large masses occupying virtually the entire mammary gland. Mammography issues are significantly overlapping issues between phyllodes tumor and benign lesions such as fibroadenomas [11, 15]. Similarly, fibroadenoma is an oval or lobular shaped mass, homogeneous with clear edges. By contrast, fibroadenoma may present peripheral calcification (“popcorn”) which, in time, comes to include the entire lesion. However, if a mammogram shows a circumscribed net mass over 6–8 cm in diameter or if a solid lesion shows rapid growth on serial mammograms, one should raise the suspicion of phyllodes tumor [4, 8, 16]. In adolescents, it is difficult to distinguish between the giant juvenile fibroadenomas and phyllodes tumor given that both tumors have the same mammographic appearance of rapidly growing masses [15, 17].

Even in the case of ultrasounds examination, the appearance of phyllodes tumor may be similar to fibroadenomas. As the latter, the phyllodes tumor has the appearance of a hypoechochogenic homogeneous, well-defined, oval or lobular shaped lesion [12]. However, phyllodes tumor occurs frequently with heterogeneous echostructure with irregular walls, with partial transonic content and with posterior acoustic enhancement and septa. These are characteristics of phyllodes tumor and they are rarely visible in fibroadenomas [15, 18].

Mammography and ultrasonography have limitations in differentiating between benign lesions and phyllodes tumor and they cannot specify its histological grade.

The clinical course is unpredictable regardless the histological grade. The current histological classification and radiological features face difficulties in predicting the clinical behavior including the development of local recurrence, distant metastasis and survival rate [9, 19]. Histopathological confirmation is made ideally on the surgical excision sample [20, 21].

The etiology is still unknown [5, 8]. Phyllodes tumor may develop de novo or from a fibroadenoma or adjacent to a fibroadenoma [8, 15].

The most common clinical occurrence is a mobile, painless, palpable and growing fast node [2, 5]. This finding in middle-aged and older women suggests rather phyllodes tumor and not fibroadenomas [15, 22]. The tumor mass may be 10 cm or greater, with an average diameter of 5 cm; they are rarely multifocal or bilateral [8, 23]. Ulceration of the skin or chest wall invasion may occur in patients with very large phyllodes tumors [5, 15]. Affecting lymph nodes is rare, therefore the axillary lymph node staging is usually not necessary [5, 8, 21].

Macroscopically, they are well-circumscribed, firm tumors on the gray and mucoid, homogeneous or cystic surface. In large tumors, areas of hemorrhage and necrosis may be present [6, 24]. Tumors may be larger than 10 cm more frequently (ranging between 1–45 cm); they can be rarely multifocal and bilateral [25, 26].

Cytopathology of phyllodes tumor includes variable cellularity, biphasic pattern (cohesive clusters of epithelial/myoepithelial cells with a background of numerous stromal cells; cellular stromal component with large spindle cells, variable cytological atypia of stromal cells [3, 27].

Microscopic features are characterized by biphasic (fibroepithelial neoplasm, showing stromal proliferation around glands (pericanalicular) or compressed cleft-like ducts (intracanalicular pattern) [10]. The ducts are lined by two cell layers (epithelial and myoepithelial cells), focal, leaf-like processes, stroma not hypercellular or/and squamos metaplasia and apocrine metaplasia [10, 16]. Stroma is distinguished by hypercellularity, myxoid, mucinous change or/and atypical and bizarre multinucleated giant cells or/and chondroid, osseous and smooth muscle metaplasia can very rarely occur [1, 2, 16].

The benign group, characterized by marked/slow cell growth, moderate/low cellular pleomorphism, has no metastases and the local recurrence rate after excision is 20% [9, 28, 29].

The group of malignant tumors, which represent 5–25% of phyllodes tumors, is characterized by marked stromal hypercellularity, more than 5 mitoses/10 HPF, invasive edges; less than 20% are accompanied by metastases in the lung, pleura, bone, liver and lymph node (rarely) [9, 27]. Approximately 30% of phyllodes tumors develop recurrences within two years after the diagnosis [21, 30]. The recurrences are common in malignant and borderline
Phyllodes tumors; local recurrence and distant metastasis are rare in the case of benign forms. Recurrences trend is towards the same histological grade, although in 25% of patients one observes shifting to a higher grade [21, 28]. Local recurrence rate depends on the margin width of surgical excision, so that all histological types require a wide surgical excision [20, 21].

The malignant stromal component of phyllodes tumor is often fibrosarcomatous and rare liposarcoma, osteosarcoma, rhabdomyosarcoma, malignant fibrous histiocytoma [30, 31].

The behavior of phyllodes tumor is unpredictable; it is important to keep in mind that no single histopathological feature could reliably predict the behavior and combination of tumor size, margin, atypia, stromal overgrowth; mitotic activity would be helpful as a guide for histological behavior.

Conclusions

Mammography and ultrasound have limitation in differentiating between benign lesion and the phyllodes tumor. In the nine analyzed cases, mammographic and ultrasound examinations did not allow the differentiation into the three groups of phyllodes tumor. Histopathological examination is considered the golden standard for their diagnosis. Correlations between mammographic and microscopic aspects were inconclusive for determining the degree of differentiation, ultrasound changes could be correlated with the histopathological aspects.

Conflict of interests

The authors declare that they have no conflict of interests.

References


Corresponding authors
Lucia Georgeta Daina, Associate Professor, MD, PhD, Department of Neurosciences, Faculty of Medicine and Pharmacy, University of Oradea, 101 Decembrie Square, 410068 Oradea, Bihor County, Romania; Phone +40771–255 673, e-mail: lucidaina@gmail.com
Adriana Nicoleta Pirte, Associate Professor, MD, PhD, Department of Dentistry, Faculty of Medicine and Pharmacy, University of Oradea, 101 Decembrie Square, 410068 Oradea, Bihor County, Romania; Phone +40722–467 422, e-mail: pirte_adriana@yahoo.com

Received: February 4, 2015

Accepted: December 15, 2015