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Abstract 
Findings in the cardiology field from the last three decades of the 20th century were ruled by the theory that the heart is a post-mitotic organ, 
incapable to regenerate. Recent studies have brought evidences regarding the existence of some cells residing in the adult heart, having 
stem properties. These cardiac stem cells (CSCs) govern myocardial homeostasis and repair by differentiating into new cardiomyocytes, 
smooth muscle cells and vascular endothelial cells and also by releasing proangiogenic and procardiogenic cytokines. Hence, CSC-based 
therapy seems to be a promising tool for repairing failing hearts. This review presents the current data regarding various subpopulations of 
CSCs and their regenerative potential revealed by phase I clinical trials; finally, future perspectives for the development of more advanced 
therapeutic protocols are proposed. 
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 Introduction 

Findings in the cardiology field from the last three 
decades of the 20th century were ruled by the theory that 
the heart is a post-mitotic organ, incapable to regenerate 
[1]. This theory was based on two facts: adult cardio-
myocytes are terminally differentiated cells that are unable 
to reenter the cell cycle and, respectively, the lack of stem 
cells (SCs) in the myocardium. From birth until old age, 
the myocardial growth was believed to be based on 
hypertrophy, and in the absence of any cardiac disease, 
it was supposed that the number of cardiomyocytes 
remained constant for the whole life. The ’90s brought 
proofs that infirmed this theory, by showing the fact that 
adult mammals’ cardiac myocytes are capable to reenter 
the cell cycle, and furthermore, they are able to participate 
to karyokinesis and cytokinesis [2, 3]. Even under normal 
circumstances, the number of myocardial cells that dies 
grows proportional with the age; until middle age this 
cellular loss is over-countered through formation of new 
cardiomyocytes, but eventually it shows the reduction  
of their number, which tries to be countervailed by the 
hypertrophy of the remaining cells. Retrospective studies 
realized with the 14C isotope have showed that during the 
life of an individual approximately 50% of the cardio-
myocytes are renewing, thus indicating the existence of 
a natural system of repair, which varies with the age, but 
inadequate in the face of a major ischemic event [4, 5]. 

The existence of postnatal cardiogenesis was confirmed 
by future studies using animal [6–8] or human models 
[9], all showing that cardiac regeneration is reducing with 
ageing. From this perspective, the cardiac homeostasis 
presumes a balance among cellular death, regeneration 
and hypertrophy. 

 Adult resident CSC populations 

The beginning of the 21st century has brought evidence 

regarding the existence of some cells residing in the heart, 
having stem properties; depending of the expressed markers, 
different research groups have described more types of 
cardiac stem cells (CSCs) (c-kit+, Sca-1+, Isl1+, cells 
named “side population”); although, it is not excluded that 
different cellular types are only the phenotypic expression 
of the same cell (which is able to express markers in 
different combinations), or that the reported differences 
are due to isolation and cultivation methods followed in 
various labs (Table 1 shows the markers expressed by 
cardiac stem cell and the authors that described them – 
adapted after [10–13]). 

Table 1 – Cellular markers expressed by CSCs 

Markers References 

+

Beltrami et al., 2003 [14]; Matsuura et al., 2004 
[15]; Messina et al., 2004 [16]; Anversa et al., 
2006 [17]; Di Felice et al., 2007 [10]; Dey et al., 
2013 [11]; Ellison et al., 2013 [12]. 

CD177/c-kit

- Oh et al., 2003 [18]. 

Sca-1 +

Oh et al., 2003 [18]; Matsuura et al., 2004 [15]; 
Messina et al., 2004 [16]; Anversa et al., 2006 
[17]; Di Felice et al., 2007 [10]; Dey et al., 2013 
[11]. 

MDR-1 + Quaini et al., 2002 [19]; Anversa et al., 2006 [17].

CD31 + Oh et al., 2003 [18]. 

- Oh et al., 2003 [18]; Di Felice et al., 2007 [10].
CD34 

+
Matsuura et al., 2003 [15]; Messina et al., 2004 
[16]. 

CD38 + Oh et al., 2003 [18]. 

- Oh et al., 2003 [18]; Di Felice et al., 2007 [10].
CD45 

+ Matsuura et al., 2004 [15]. 
Cardiac 

troponins 
+

Matsuura et al., 2004 [15]; Messina et al., 2004 
[16]; Di Felice et al., 2007 [10]. 

Cardiac actin +
Beltrami et al., 2003 [14]; Matsuura et al., 2004 
[15]; Di Felice et al., 2007 [10]. 

Tropomyosin + Matsuura et al., 2004 [15]. 
α- or β-

Heavy chain 
of cardiac 

myosin 

+
Beltrami et al., 2003 [14]; Matsuura et al., 2004 
[15]; Messina et al., 2004 [16]; Laugwitz et al., 
2005 [20]; Di Felice et al., 2007 [10]. 
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Markers References 
Smooth-

muscle actin 
+ 

Beltrami et al., 2003 [14]; Di Felice et al., 2007 
[10]. 

Connexin 43 + 
Matsuura et al., 2004 [15]; Di Felice et al., 2007 
[10]. 

MEF-2C + 
Beltrami et al., 2003 [14]; Oh et al., 2003 [18]; 
Matsuura et al., 2004 [15]. 

Nestin + 
Quaini et al., 2002 [19]; Di Felice et al., 2007 
[10]. 

GATA-4 + 
Beltrami et al., 2003 [14]; Oh et al., 2003 [18]; 
Matsuura et al., 2004 [15]; Di Felice et al., 2007 
[10]. 

Csx/Nkx-2.5 + 
Beltrami et al., 2003 [14]; Matsuura et al., 2004 
[15]. 

Isl-1 + 
Laugwitz et al., 2005 [20]; Di Felice et al., 2007 
[10]. 

vWF - Beltrami et al., 2003 [14]. 

Abcg-2 + Martin et al., 2004 [21]. 

CSCs: Cardiac stem cells; CD: Cluster of differentiation; MDR1: Multi-
drug resistance; MEF-2C: Myocyte-specific enhancer factor 2C; GATA-4: 
GATA binding protein 4; Isl-1: Islet 1; vWF: von Willebrand factor; 
Abcg-2: ATP-binding cassette superfamily G member 2. 

First to describe the presence of such cells was 
Beltrami’s group in 2003, which identified in the rat 
myocardium a lin-/c-kit+ cell population with clonogenic 
proprieties, capable of generating – in vitro – both cardio-
myocytes and vascular cells [14]. In the adult heart, the 
activation of CSCs Oct+ induces symmetric, but also 
asymmetric division, generating c-kit+ cells, which will 
differentiate into myocyte (GATA-4, Nkx-2.5, MEF-2C, 
α-sarcomeric actin), endothelial (Ets-1, von Willebrand 
factor) and smooth muscular line (GATA-6, actin). Differ-
entiated cells, even the small cardiomyocytes, continue to 
proliferate, fact confirmed by bromodeoxyuridine incor-
poration of DNA and the expression of Ki67 nuclear 
protein; thus, CSCs are multi-potent, clonogenic and 
capable of self-renewal [22]. 

The studies conducted on animal models showed the 
feasibility and benefits of c-kit+ cells administration on 
ventricular function, remodeling and dimension of myo-
cardial necrosis [23]; existence of this type of cells was 
described also in the human heart, the generation of new 
cardiomyocytes being shown in the case of patients with 
aortic stenosis and ischemic cardiomyopathy [24, 25]. 

Another population of cardiac progenitor cells residing 
in the mouse heart is called Sca-1+. In vitro, these cells 
differentiate in cardiomyocytes, being CD31+, but c-kit-; 
in the presence of oxytocin, they express proteins and 
cardiac transcription factors, like GATA4, cardiac actin, 
troponin T, tropomyosin, connexin 43; injected intrave-
nously in mice with myocardial infarction, Sca-1+ cells 
generate cardiomyocytes, with mild effects on myocardial 
regeneration. 

Another type of CSC is that expressing the transcription 
factor Islet 1 (Isl-1+) [20]; it is a well-known fact that Isl-1 
is showed in cells involved in murine cardiac morpho-
genesis during embryonic life, while the homozygote 
deletion of this factor leads to defects in development of 
the right ventricle (RV), atria and outflow tract of the 
RV, but without affecting the development of the left 
ventricle (LV). Regarding this data, Anversa et al. 
stipulated that the presence of Isl-1 does not define a 
particular type of CSC, but is attributed to the start of 
differentiation to myocyte line [17]. 

CSCs, which are part of side population (SP) subgroup, 

are defined by the capacity to exclude Hoechst 33342 and 
Rhodamine 123 dyes, due to the rapid efflux mediated 
by the ATP-binding cassette superfamily G member 2 
(ABCG2) and multidrug resistance (MDR1) transporters 
[26]. 

Anversa et al. have proposed to classify the immature 
cardiac cells in four groups, from the primitive to the 
differentiated ones: CSCs, progenitors, precursors and 
amplified cells; first three types express c-kit, Sca-1 and 
the multi-drug resistance factor [17]. This theory is asserted 
by recent studies that have shown the fact that c-kit+ 
cells are undifferentiated primitive cells, while the CSCs 
Sca1+ with transcriptional profile are the closest to 
cardiomyocytes; both SP type cells and Sca1+ cells 
express on their surface the Sca1+ antigen, while being 
c-kit-, which led the authors to state that those two cellular 
types represent different stages of the same progenitor 
cell [11]. 

CSCs are distributed patchy in the heart; although 
the majority of CSCs are located in the LV, the higher 
concentration on the volume unit is in those areas of the 
heart with low parietal stress, such as the atria and the apex, 
where the mean concentration of this cells in viable myo-
cardium is approximately one CSC/10 000 cardiomyocytes 
(similar percentage with hematopoietic stem cells in bone 
marrow), but with great variation between the results 
published by different research groups. 

The studies realized on mice [15, 25], rats [14] and 
humans [25] have indicated the existence of one CSC to 
8000–20 000 myocytes, or even two CSCs/25 myocytes 
[18, 21], but probably these high values have also included 
the presence of endothelial progenitors. 

At myocardial level, CSCs are nested in structural 
and functional units called niches; the CSCs niche has an 
essential role in determination of cellular behavior under 
physiological or pathological circumstances in regard to 
maintaining the undifferentiated character, and also the 
growth, migration and differentiation of these cells. In vivo, 
the CSCs niche is subepicardial located, near the coronary 
arteries. A central feature of the niche is represented by 
telocytes, cells that, through thin and long prolongations, 
make contact with the CSCs and the cardiac progenitor 
cells, having a supportive and informational purpose [27, 
28]. 

 Cardiosphere-derived cells 

Myocardial regeneration respects a well-known pro-
cedure, which states that CSCs generate cellular precursors 
restricted to a certain cell line, which in the end turn into 
terminally differentiated cells. Some studies showed that 
harvested CSCs from murine and human myocardium are 
able to be grown as spherical aggregates called cardio-
spheres; in vitro architecture of cardiospheres mimicks 
that of in vivo CSCs niche. 

In 2004, Messina’s group obtained cardiospheres from 
murine and human cells harvested through myocardial 
biopsy at atrial and ventricular site [16]. Grown in Petri 
dishes, these cells do not adhere, but form three-dimen-
sional aggregates named cardiospheres, which are similar 
to embryoid bodies and neurospheres. Cardiospheres 
express endothelial markers (human: KDR, mice: flk), 
but also stem markers (CD34, c-kit, Sca-1); each cardio-
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sphere is the result of proliferation of a single cell, and 
is capable of generating cardiomyocytes, smooth muscle 
cells and endothelial cells. Thus, the center of this structure 
is made of c-kit+ primitive cells, surrounded differentiated 
cells expressing myocyte proteins and connexin 43 arranged 
in successive arrays, while at periphery a layer of mesen-
chymal stromal cells can be found. Connexin 43 has a 
dual function: in undifferentiated progenitors it stimulates 
proliferation, whereas in differentiated cells towards cardio-
myocyte line it facilitates the electric coupling with 
surrounding cells. Undifferentiated cells are connected 
with differentiated ones through gap junctions. Unlike 
monolayer classic-cultivated CSCs, cardiospheres contain 
a higher percentage of c-kit+ cells, enhanced expression 
of the genes involved in cellular renewal (Nanog and 
SOX2), as well as augmentation of some growth factors 
and extracellular matrix molecules specific to stem cells: 
insulin-like growth factor 1 (IGF-1), α2 integrin, β1 
laminin; dissociation of cardiospheres into single cells 
decreased the expression of adhesion molecules and the 
resistance of cells to oxidative stress [29]. 

Murine cardiospheres derived cells proved to have 
spontaneous contractile activity, while the human ones 
became contractile only after 24 hours of cultivation in 
the presence of rat cardiomyocytes; in vivo, on a murine 
model, it has been shown that these cells contributed to 
myocardial regeneration [16]. 

Later on, in 2007, Smith et al. used the technique 
described by Messina in order to obtain cardiospheres from 
human percutaneous endomyocardial biopsy specimens; 
acquired cells were proven to be positive for c-kit, but 
not for MDR1. Similar to Messina’s findings, they did 
not have spontaneous contractile activity, but gained a 
synchronized action potential after co-cultivation with 
newborn rat cardiomyocytes [30]. 

Transplanted in infarcted myocardium, CSCs – as well 
as cardiospheres-derived stem cells (CSCd) – differentiate 
and release proangiogenic and procardiogenic cytokines, 
thus restricting the cardiac remodeling, improving the 
function and perfusion in necrosis-affected areas in both 
direct and indirect (paracrine) manner [14, 23, 31–35]. 

Growth conditions influence decisively the effects of 
transplanted cells on the cardiac function. Transplantation 
of CSCd (derived from first or second generations of 
cardiospheres) was proven to be more effective than admi-
nistration of cells derived directly from biopsy explants. 
Three weeks after CSCd transplantation, LV ejection 
fraction (LVEF) improved to 37.7±4.6%, respectively 
38.2±3.2%, while in mice receiving cells derived directly 
from biopsy explants mean LVEF was only 32.1±3.3%. 
Still, comparing to control animals recording degradation 
of systolic function (LVEF 23.5±2.6% at three weeks 
follow-up versus 29.3±3.2% at the study beginning), the 
administration of cells derived directly from biopsy 
specimens had a benefic effect, even though of lower 
amplitude. This data emphasize the importance of the 
three-dimensional architecture in maintaining the cells 
in an undifferentiated state [36]. 

Another key determining factor of transplanted cells 
fate, as well as of cardiac benefit, is the capacity of 
transplanted cells to engraft with the host myocardium, 
being well known that there is a direct correlation between 

cells’ engraftment and LVEF improvement. According 
to Davis et al., CSCd possess higher oxidative stress 
resistance in comparison with CSCs cultivated in single 
layer, and also enhanced expression of extracellular matrix 
molecules and adhesion molecules such as E-selectin, 
β1-laminin and α2-integrin. It is a proven fact that the 
molecular components of extracellular matrix and adhesion 
molecules have a key role in survival and grafting of 
cells, so that strategies to stimulate their expression could 
contribute to a superior grafting of a CSCd in the host 
heart, hence to a superior effect on the cardiac function 
[36]. 

An important aspect is the CSCs tropism for ischemic 
tissue. This was proven through identification of the 
transplanted cells in the necrotic area – even though those 
cells were injected at the border between the ischemic 
and healthy myocardium – and rapid disappearing of 
transplanted cells in the myocardium of healthy animals. 

As aforementioned, the mechanism by which CSCs/ 
CSCd contributes to the improvement of the cardiac 
function is not only direct, but also indirect. Currently, 
the dominant theory of stem cell effectiveness has moved 
toward the cytokine-paracrine hypothesis; the transplanted 
cells secret a large array of cytokines involved in cardio-
protection and vasculogenesis [37]. Among the growth 
factors secreted by above-mentioned cells, there are 
vascular endothelial growth factor (VEGF), insulin-like 
growth factor 1 (IGF-1) and hepatocyte growth factor 
(HGF), their levels varying according to cultivation technique 
(cardiospheres or monolayer), as well as the time spent in 
culture. Activation of PI3K/AKT pathway by the stem 
cell derived factor (SCF) has a fundamental role in the 
migration of c-kit+ CSCs in vivo and in vitro [38], also 
improving the cells implantation [39, 40]; recently, Guo 
et al. attested that this effect is mediated, at least partially, 
by metalloproteinases (MMP) 2 and 9 [41]. 

 CSC-based clinical trials 

As expected, after preclinical studies, clinical trials 
were conducted in order to assess the efficacy of cardiac 
stem cell-based therapy for heart regeneration. 

In case of SCIPIO (Stem Cell Infusion in Patients 
with Ischemic CardiOmyopathy) – phase one randomized 
trial – Bolli et al. reported improvement of LVEF by 
12.3% one year after intracoronary autologous lin-/c-kit+ 
cells injection in patients with moderate to severe systolic 
dysfunction after myocardial infarction who underwent 
surgical revascularization. They also observed a decrease 
in infarct size, improvement in NYHA class and also 
quality of life in patients treated with SCs compared to 
control group [42]. However, in these circumstances, it 
is difficult to differentiate between the favorable outcome 
of myocardial revascularization and that of cell therapy. 

Another phase one randomized trial – CADUCEUS 
(CArdiosphere-Derived aUtologous stem CElls to reverse 
ventricUlar dySfunction) assessed the outcome of intra-
coronary CSCd (harvested by an endomyocardial biopsy) 
administration in different doses (12.5×106, 17.3×106, 
respectively 25×106) in patients with ischemic heart failure 
and LVEF between 25% and 40%. Magnetic resonance 
imaging (MRI) evaluation at 12 months after transplantation 
showed a decrease in scar size and myocardial viability 
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improvement in patients who received standard of care 
treatment plus CSCd vs. those who only received standard 
of care treatment, but with no effect on LVEF, left 
ventricular volumes, functional NYHA class or quality 
of life [43]. 

No adverse effects were reported in the follow-up 
period (12, respectively six months) in any of the 
mentioned trials. 

The study conducted by Eduardo Marbán – “Allogeneic 
heart stem cells to achieve myocardial regeneration” 
(ALLSTAR) phase one trial, first of its kind, proposed 
to assess the safety and feasibility of allogenic CSCd 
intracoronary infusion in patients with recent (28–90 days) 
or chronic (91–365 days) myocardial infarction, with or 
without systolic dysfunction (mean LVEF 42% with 
variations between 26.7–55.1%) [44, 45]. Given the 
lack of serious adverse events, ALLSTAR II – phase II, 
randomized, double blind trial was initiated, still ongoing, 
with a design allowing the assessment of myocardial scar 
reduction by MRI. 

Low rates in terms of migration, engraftment and 
survival of transplanted cells are one of the major 
limitations of cell therapy. Therefore, a number of strategies 
have been imagined and subsequently tested – preclinically 
[46, 47] as well as clinically – to stimulate the migration, 
engraftment and cell survival with more or less encoura-
ging results. Effectiveness of administration of CSCs 
harvested by myocardial biopsy combined with hydrogels 
incorporating fibroblast growth factor in patients with 
ischemic heart failure and severe systolic dysfunction 
undergoing surgical revascularization is currently being 
tested in a small ongoing study in Japan: ALCADIA 
(AutoLogous Human CArdiac-Derived Stem Cell To Treat 
Ischemic cArdiomyopathy) phase one, non-randomized, 
without control group trial [48]. Of the six patients enrolled 
(five men and a woman), one was excluded from follow-up 
three weeks after surgery due to acute graft occlusion. 
Preliminary results are encouraging, the five remaining 
patients presenting – six months after combined therapy 
– improvement in LVEF (assessed by 2D echography and 
MRI), improvement in maximal oxygen consumption and 
reduction in infarct size. However, clinical use of growth 
factors/cytokines as adjuvants of cell therapy must be made 
with caution, given the potential risk of adverse effects 
[49]. 

Recent studies have brought into question quantitative 
but also qualitative changes of adult SC with old age, 
cardiovascular risk factors and associated comorbidities 
(diabetes, arterial hypertension or cardiovascular disease), 
decreasing the efficiency of cell therapy particularly in 
patients who need it most [50]. Even though most trials 
are focused on other types of SCs or progenitors cell (bone 
marrow SCs [51], adipose-derived stem cells [52–55], 
circulating endothelial progenitor cells [56–59]), there  
is direct evidence regarding CSCs damage in elderly 
individuals [60–63]. 

 Conclusions and perspectives 

Cardiac stem cell transplantation in ischemic disease 
proved to be both safe and feasible, but validation on 
larger number of patients is required. Also, accurate 

indications, optimal moment of cell administration and 
processing method remain to be determined, together 
with long-term effects. Future research efforts should 
concentrate on standardization of cell preparation and 
delivery procedures, as well as on developing new effective 
strategies to stimulate cell migration, engrafting and survival. 
Additional studies are necessary in order to determine the 
relationship between the active (contraction stimulation) 
and passive effect (remodeling inhibition) from quantitative 
and also temporal perspective. The last, but not the least, 
cell therapy should be personalized according to individual 
patient characteristics – including age and associated co-
morbidities. 
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