Cribriform-morular variant of papillary thyroid carcinoma at pediatric age – case report and review of the literature

Andreea Cristiana Brehar1), Dana Cristina Terzea2,3), Dumitru Lucian Ioachim3), Camelia Procopiuc1), Felix Mircea Brehar9), Alexandra Cătălina Bulgar5), Mircea Vasile Ghemigian6), Constantin Dumitracă5,7)

1) Department of Pediatric Endocrinology, “C. I. Parhon” National Institute of Endocrinology, Bucharest, Romania
2) Department of Morphopathology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
3) Department of Pathology and Cytopathology, “C. I. Parhon” National Institute of Endocrinology, Bucharest, Romania
4) Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
5) Department of Endocrinology, “C. I. Parhon” National Institute of Endocrinology, Bucharest, Romania
6) Department of Surgery, “C. I. Parhon” National Institute of Endocrinology, Bucharest, Romania
7) Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania

Abstract
Cribriform-morular variant of papillary thyroid carcinoma (CMV-PTC) is a rare tumor, which exceptionally occurs at pediatric age. CMV-PTC may develop in patients with familial adenomatous polyposis (FAP) or may be a sporadic tumor. The authors present a case of CMV-PTC in a 10-year-old girl patient without FAP history, who presented with a left neck mass. The patient underwent total thyroidectomy with central compartment neck dissection. Histopathological diagnosis was compatible with cribriform-morular variant of papillary thyroid carcinoma and Hashimoto’s thyroiditis. Immunostaining was positive for thyroglobulin, β-catenin, CD10 and p53. Molecular test showed the absence of BRAF, K-RAS mutations, deletions or duplications of APC (adenomatosis polyposis coli) gene and showed the presence of RET/PTC (rearranged during transfection/papillary thyroid carcinoma) rearrangements. At 32 months follow-up, the patient was without signs of recurrence. This particular form of thyroid carcinoma should raise suspicion of a possible familial cancer syndrome, therefore early diagnosis and thoroughly evaluation, which includes colonoscopy and genetic screening are mandatory.

Keywords: cribriform-morular carcinoma, papillary thyroid carcinoma, Hashimoto’s thyroiditis, thyroglobulin.

Introduction
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs and it may develop from thyroid follicular epithelial cells and from para-follicular C cells. There are several sub-types of follicular cell-derived TC: well-differentiated papillary carcinoma (PTC) (80% of all thyroid carcinoma), follicular carcinoma (FTC) (approximately 15% of cases), poorly differentiated carcinoma and anaplastic (undifferentiated) carcinoma (2% of all thyroid cancer) [1].

The cribriform-morular variant (CMV) of PTC is a very rare subtype of PTC that was first described by Harach et al., in 1994, in patients with familial adenomatous polyposis (FAP) and in 1999 by Cameselle-Teijeiro & Chan as the sporadic counterpart of FAP-associated thyroid carcinoma. The sporadic form is often solitary and in FAP-associated thyroid carcinoma is often multicentric [2, 3]. This rare form of thyroid carcinoma presents a particular morphology: areas showing cribriform architecture with follicular, papillary, trabecular, solid and spindle cell growth patterns with morular areas [2–4].

The molecular mechanisms involved are mutation of the APC (adenomatosis polyposis coli) gene and/or β-catenin gene that activate the Wnt pathway (derived from Wingless, the Drosophila melanogaster segment-polarity gene, and Integrase-1, the vertebrate homologue) with cytoplasmic and nuclear storage of β-catenin [5–7]. RET/PTC translocations [rearrangements of the rearranged during transfection (RET) proto-oncogene, called RET/PTC rearrangements] were also described in this type of thyroid carcinoma [8, 9].

The aim of this paper was to evaluate a case of a rare form of thyroid cancer, the cribriform-morular variant of papillary thyroid carcinoma (CMV-PTC), which exceptionally occurs in pediatric patients and to review the current data available in the literature. To our knowledge, in the literature it was described only a case of CMV at pediatric age. Moreover, this is also the first report of CMV-PTC associated with Hashimoto’s thyroiditis at pediatric age.

Case presentation
Study case
We report the case of a 10-year-old girl without history of FAP or thyroid pathology who presented a left neck mass with relative rapid development. Physical examinations revealed a 3/3 cm nodule in the left lobe of thyroid with multiple hard swellings in the left supraclavicular and upper cervical regions. Thyroid ultrasound demonstrated a 2.81/2.9 cm mass in the left thyroid lobe with ultra-
sound signs suggestive for malignity with regional lymphadenopathy (Figure 1). Thyroid scan with 131I revealed a “cold” left thyroid nodule. Laboratory findings of thyroid function tests revealed subclinical hypothyroidism. Antithyroid-peroxidase antibodies (anti-TPO) were positive and calcitonin levels were normal. Cervical, mediastinal and thoracic computed tomography (CT) scan described a 2.39/2.62/3.03 cm mass in the left lobe with inner calcifications with numerous regional lymph nodes metastases (Figure 2). The fine-needle aspiration (FNA) biopsy specimen demonstrated cells suspicious for papillary neoplasia.

The patient underwent a total thyroidectomy with central compartment neck dissection. After surgery, the patient underwent therapeutic radioactive iodine ablation and received T4 suppression treatment. Given the histopathological diagnosis, which was C-MV of papillary thyroid carcinoma (C-MV of PTC), the patient was advised for periodically follow-up visits, which should include colorectal examination and genetic screening for APC and β-catenin mutation, when they will be available.

Histopathological evaluation

The surgical specimen was fixed in formalin and then paraffin-embedded. Serial 3-μm sections had been cut from paraffin blocks and stained with Hematoxylin and Eosin (HE).

The pathology report on gross examination revealed a 5.8/3.9 cm thyroid carcinoma of the entire left thyroid lobe (pT3N1). The isthmus and the right lobe of the thyroid parenchyma exhibited an aspect of chronic thyroiditis. Thirty-two lymphatic nodes were examined, of which 10 lymphatic nodes presented metastatic deposits of thyroid carcinoma.

HE-stained cross-sections showed follicular (Figure 3, d and f), papillary (Figure 3f), solid (Figure 3, e and f), cribriform (Figure 4, b–d) and morular (Figure 4, a and c) architecture with capsular, vascular and lymphatic invasion and extrathyroidal extension (ETE). The remainder of the thyroid parenchyma revealed Hashimoto’s thyroiditis. Histological examination of 10 regional lymph nodes revealed metastatic deposits of thyroid carcinoma.

Immunohistochemistry evaluation

The immunohistochemistry (IHC) was performed on 3-μm sections from 10% formalin-fixed paraffin-embedded tissues according to the IHC method of indirect bistadial technique performed with a polymer based detection system (EnVision™ Dual Link System-HRP, DAKO, Carpinteria, CA, USA). Tissue sections were spread on poly-L-lysine-coated slides immersed in three changes of xylene and rehydrated using a graded series of alcohol. Antigen retrieval was performed in microwave oven. In each section, endogenous peroxidase was blocked by 20 minutes incubation in 3% hydrogen peroxide. The sections were incubated with primary antibody: thyroglobulin (DAKO, 1:500, polyclonal), β-catenin (DAKO, 1:200, β-catenin 1), p53 (DAKO, 1:50, D07), CD10 (Leica, 1:100, 56C6) and Ki67 (DAKO, 1:100, Mib-1), at room temperature for 1 hour. The DAKO EnVision Detection System-HRP was then applied for 30 minutes. Finally, the sections were incubated in 3,3′-diaminobenzidine for 5 minutes, counterstained with Mayer’s Hematoxylin and mounted. The slides were examined and photographed on Leica DM750 microscope. Negative controls were obtained by replacing the primary antibody with non-immune serum. As a positive control, a thyroid tissue section was used.

On immunohistochemical examination, the tumor cells presented a diffuse strong expression for thyroglobulin (Figure 4a) with focal positive immunoreactivity for β-catenin (Figure 4b), CD10 was expressed diffuse in tumor cells (Figure 4c), p53 was positive in 35% on the tumor cells and Ki67 was positive in about 15% on the tumor cells (Figure 4d).

Molecular genetic analysis

The APC gene was analyzed from blood by PCR (polymerase chain reaction) and sequencing of both DNA strands of the entire coding region and the highly conserved exon intron splice junctions. The reference sequences of the APC gene are: NM_001127510.2, NM_001127511.2. MLPA (multiplex ligation-dependent probe amplification) analyses were performed using SALSA MLPA probemix P043 provided by MRC-Holland to test for deletions or duplications within or including the APC gene. For BRAF and RAS genes, analysis the unstained sections were prepared from the paraffin block and tumor area was marked from which DNA was extracted with the WaxFree

Figure 1 – Thyroid ultrasound demonstrates a 2.81/2.9 cm mass in the left thyroid lobe with ultrasound signs suggestive for malignity (left) with regional lymphadenopathy (right).

Figure 2 – Cervical CT scan describes a 2.39/2.62/3.03 cm mass in the left lobe with microcalcifications and numerous regional lymph nodes metastases.
DNA kit (BioMedomics, Inc., Research Triangle Park, NC, USA) following the manufacturer’s protocol. By a specific PCR reaction, the 15 exon of the BRAF gene was amplified and then applied the sequencing technique. We analyzed K-RAS mutations by PCR-single-strand conformational polymorphism followed by DNA sequencing. Detection of RET/PTC rearrangements was performed from genomic DNA isolated from tumor tissue with High Pure PCR DNA Template-Roche kit according with manufacturer’s instructions. The quality of isolated DNA was checked by spectrophotometry (NanoDrop, Thermo Scientific, USA). Detection of RET/PTC was performed by *in situ* hybridization (FISH) using the procedure on isolated nuclei (Zytovision GmbH, Germany). The molecular tests for detecting beta-catenin mutation were not available.

We detected no pathogenic mutation in the APC gene by sequencing. No large deletions or duplications within or including the APC gene were detected by MLPA analysis. The T1799A BRAF mutation was not found. By sequencing DNA, no mutation at codons 12 and 13 of the KRAS gene was detected. Regarding the detection of RET/PTC rearrangements, we observed the presence of a split FISH signal (rearranged) in 92% of the nuclei analyzed.

![Figure 3](image_url)

Figure 3 – (a) Microscopic appearance of CMV of PTC with morular (squamoid) areas (HE staining, ×200); (b) Microscopic area of tumor with cribriform pattern (HE staining, ×200); (c) Mixed cribriform and morular patterns of the tumor (HE staining, ×200); (d) Follicular and cribriform aspect of the tumor (HE staining, ×200); (e) Solid areas and calcospherites (HE staining, ×200); (f) Microscopic appearance of CMV of PTC with papillary (narrow arrow), follicular (star) and solid (wide arrow) patterns on the same section (HE staining, ×50).
Figure 4 – (a) Immunohistochemical staining for thyroglobulin in tumor cells: the tumor cells presented a diffuse strong expression for thyroglobulin (CMV-PTC) (×50); (b) Immunohistochemical staining for \(\beta \)-catenin in PTC with cribriform patterns: the tumor cells presented focal positive immunoreactivity for \(\beta \)-catenin (×400); (c) Immunohistochemical staining for CD10 in tumor cells, morular (squamoid) areas (arrow) (CMV-PTC): CD10 was diffuse expressed in tumor cells (×100); (d) Immunohistochemical staining for Ki67 in 15% of tumor cells (CMV-PTC) (×200).

\section*{Discussion}

TC is rare in children and adolescents: 0.4–5.4 per 1 000 000 [10–15] and usually it is a well-differentiated papillary subtype or a papillary-follicular subtype [16]. Ahn & Park noticed that the histological types found in children and adolescents are papillary (89%) and follicular (7.8%) carcinoma and other types (3.2%) [17]. Koo et al. observed that the histological types in young patients are the diffuse sclerosing variant (41.2%), conventional PTC (38.2%), follicular variant (2.9%), and cribriform-morular variants (1.5%) [18].

CMV-PTC is a rare neoplasm described by Harach et al., in 1994, as a particular thyroid carcinoma observed in patients with FAP sometimes preceding the diagnosis of FAP with 4–12 years before colon manifestations [2]. The prevalence of TC in FAP varies from 1 to 2% [19, 20] up to 12% [21, 22]. FAP, an autosomal dominant disorder caused by a germline mutation in the APC gene, is characterized by several hundred or thousands of adenomatous colorectal polyps that could progress to adenocarcinoma and numerous extracolonic manifestations: gastric and upper intestinal adenomas and carcinomas, hepatoblastomas, congenital hypertrophy of the retinal pigment epithelium (CHRPE), osseous tumors, epidermoid cysts in the skin, dental abnormalities, desmoid tumors in the abdominal wall and brain tumors [23–25].

In 1999, Cameselle-Teijeiro & Chan described the cribriform-morular variant (C-MV) of PTC as the sporadic counterpart of FAP-associated thyroid carcinoma representing approximately 0.1–0.2% of all PTC [3, 8]. FAP-associated thyroid tumors have a female predominance (female-to-male ratio of 17:1) and a mean age of 27.65 years [6, 26]. CMV-PTC tumors are encapsulated nodules or well circumscribed and may present capsular and/or vascular invasion [3]. Sporadic cases usually appear as isolated tumors and the forms associated with FAP are often multifocal [2, 27]. This rare variant of thyroid carcinoma is characterized histologically by a combination of cribriform, follicular, papillary, trabecular, solid and spindle cell growth patterns with morular areas [2–5]. Follicular, papillary and trabecular patterns may be observed within the same nodule. The colloid is absent in the lumina of the cribriform areas and psammoma bodies and necrosis are not observed [2, 3]. Squamous morula is different from squamous metaplasia. According to Hirokawa et al. morular cells are positive for Bcl-2 and negative or weakly positive for cytokeratin and \(\beta \)-catenin is located either in nucleus or intracytoplasmic [3, 5]. Squamous metaplastic cells are positive for \(\beta \)-catenin and S-100 protein-positive dendritic cells are observed [28]. The differential diagnoses of CMV-PTC are represented by tall cell variant of PTC, columnar cell carcinoma and poorly differentiated carcinoma [29].
According with literature data, on immunohistochemical analysis most tumor cells are positive for the following markers: thyroid transcription factor-1 (TTF1), cytokeratins 7 and 19, vimentin, estrogen and progesterone receptors, Bcl-2, E-cadherin and galectin-3. Also, tumor cells may be focally positive or totally negative for thyroglobulin and negative for calcitonin or cytokeratin 20 [2–5, 30]. CD10 immunostaining is a marker for recognition morules in tumors in which APC/β-catenin pathway is also involved [31]. In our case, the tumor stained positively for thyroglobulin (diffusely positive), CD10, β-catenin, p53 (positive 35% in tumor cells) and Ki67 (positive 15% in tumor cells) (Figure 4).

The molecular mechanisms involved in this variant of PTC are represented by germline or somatic mutation of APC gene and/or somatic mutation of β-catenin (CTNNB1) gene with activation of the Wnt pathway with nuclear and cytoplasmic accumulation of β-catenin [3, 8, 30]. APC gene, a tumor suppressor gene, is located on the long arm of chromosome 5 (5q21-22) and contains 15 exons. There are a various expression patterns depending on the location of the APC mutation. The study of Cetta et al. reported that in patients with FAP and CMV of PTC more than 85% of germline mutations of the APC gene were in exon 15. The majority of these germline mutations were before codon 1220 and outside the mutation cluster region (MCR) (codons 1286 to 1513), currently considered the hot spot mutation area [32–37].

Genetic studies revealed that RET/PTC rearrangements were also involved in CMV-PTC [38, 39]. In children and adolescents with PTC it was also observed RET/PTC rearrangements, namely RET/PTC1 [inv(10)(q11.2;q21)] and RET/PTC3 [inv(10)(q11.2;q10)] [40, 41]. In young adults with PTC, the presence of RET/PTC rearrangements was associated with poor prognosis but in children and adolescence with PTC, the relationship between the presence of these rearrangements and clinical outcome require further studies [42]. No BRAF mutations have been described to date through genetic alterations involved in CMV-PTC [8, 23, 30, 43]. BRAF mutations are rare in children and adolescence PTC, unlike the adult PTC where is frequently observed (36–83% of cases) and was associated with an aggressive behavior of PTC [44, 45].

In our case, genetic test showed the absence of BRAF mutation, K-RAS mutation, deletions or duplications within or including the APC gene. However, we observed the presence of RET/PTC rearrangements, showed by a split FISH signal (rearranged) in 92% of the nuclei analyzed.

The long-term prognosis for patients with CMV-PTC is good [34, 46] and the 5- and 20-year survival rates of FAP-associated PTCs have been reported to be 90% and 77%, respectively [34], except an aggressive subtype of CMV-PTC with neuroendocrine differentiation and areas of poorly differentiated carcinoma [8]. Cameselle-Teijeiro et al. described a case with neuroendocrine differentiation that was partially positive for chromogranin and synaptophysin and negative for thyroglobulin and calcitonin [8] and Nakazawa et al. presented a case of CMV-PTC with transformation into poorly differentiated thyroid carcinoma [47]. From a total of 126 cases reported till now in literature six patients died of neoplasia [2–7, 21, 22, 26, 28, 33–35, 37, 46, 48–53].

The authors of this report present a case of a very rare form of thyroid cancer, the CMV-PTC, which exceptionally occurs at pediatric age. To our knowledge, in the literature it was described only a case of CMV at pediatric age in an 8-year-old girl [54]. The absence of mutations/deletions of the APC gene and the absence of polyps at colonoscopy leads to the conclusion that the patient presents a sporadic counterpart of FAP-associated thyroid carcinoma.

The most common immunohistochemical markers expressed in PTC are p53, E-cadherin and Bel-2 [55]. Recent evidences show a correlation of vimentin and E-cadherin with metastases and clinical aggressive behavior of PTC [56]. The aggressive behavior of PTC (extra-thyroidal invasion, lymph node metastases and advanced tumor stage at diagnosis) is also associated with BRAF mutation. In our case, the V600E BRAF mutation was negative and overexpression of p53 protein and Ki-67 may explain this behavior. According to Kim et al., overexpression of p53 protein and Ki-67 in PTC is associated with tumor progression. Overexpression of p53 protein was positively associated with extrathyroidal extension, and Ki-67 immunoreactivity was positively correlated with tumor size [57]. On the other hand, at pediatric age at the time of diagnosis, the thyroid carcinoma usually presents in an advanced stage: primary tumor is large, lymph nodes metastases are frequently observed (70% of pediatric patients) and distant metastases are detected 3–4 times more frequently than in adults (10–20% of children) [58]. Thyroid carcinoma at pediatric age has a good prognosis and age is an important factor regard the recurrence, and studies demonstrate that mortality rate is less than 10% [58, 59].

We report a rare case of papillary thyroid carcinoma occurred at a 10-year-old girl, which due to possible association with FAP should be mentioned. Currently, assessment, treatment and follow-up of children and adolescents with differentiated thyroid carcinoma are performed by protocols developed for adults. However, the differentiated thyroid carcinoma in children and adolescents should be considered as a distinct subtype and a diagnosis protocol for evaluation of thyroid nodules in children and adolescents is necessary to be developed in order to establish a correct diagnosis and an optimal therapy.

Conclusions

Cribriform-morular variant of papillary thyroid carcinoma is a rare form of PTC, which could be associated with FAP. The diagnosis is assessed on histopathological and immunohistochemical examination. In conclusion, it should be emphasized that this particular form of thyroid carcinoma could raise the suspicion of a possible familial cancer syndrome (FAP). Moreover, CMV-PTC could precede the colonic manifestation, therefore early diagnosis and thoroughly evaluation, which includes colonoscopy and genetic screening are mandatory.

Conflict of interests

The authors declare that they have no conflict of interests.
Acknowledgments

We thank Dr. Oana Popa for FISH analysis and Dr. Anda Dumitrașcu for CT scan images.

FISH analysis was funded by the project GENITIR, PCCA2 No. 135/2012.

References

[18] Koo JS, Hong S, Park CS. Diffuse sclerosing variant is a major subtype of papillary thyroid carcinoma in the young. Thyroid, 2009, 19(1):1225–1231.
Cribriform-morular variant of papillary thyroid carcinoma at pediatric age – case report and review of the literature

Corresponding author
Felix Mircea Brehar, Assistant Professor, MD, PhD, Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020022 Bucharest, Romania; Phone +40724–257 549, Fax +4021–334 73 50, e-mail: felixbrehar@yahoo.com

Received: May 10, 2014
Accepted: July 8, 2016