What if body fat percentage association with FINDRISC score leads to a better prediction of type 2 diabetes mellitus?

IULIA-ELENA JURCA-SIMINA1,2, IULIUŞ JUGĂNARU3,4, MIRCEA-ŞTEFAN IURCIUC5, STELA IURCIUC5, EMIL UNGUREANU6, ANDREEA IULIA DOBRESCU1,2, ADELA CHIRIŢĂ-EMANDI1,2, OANA RALUCA VOINESCU1,7, IOANA-CRISTINA OLARIU3,8, MARIA PUIU1,2, DOINA GEORGESCU9, VERONICA-MĂDĂLINA BORUGĂ10

1) Center of Genomic Medicine, "Victor Babes" University of Medicine and Pharmacy, Timişoara, Romania
2) Department of Medical Genetics, "Louis Túrcanu" Emergency Hospital for Children, Timișoara, Romania
3) Department of Pediatrics, "Victor Babeş" University of Medicine and Pharmacy, Timișoara, Romania
4) Department of Pediatrics, 1st Pediatric Clinic, "Louis Túrcanu" Emergency Hospital for Children, Timișoara, Romania
5) Department of Cardiology/Preventive Medicine and Cardiovascular Rehabilitation, "Victor Babes" University of Medicine and Pharmacy, Timișoara, Romania
6) Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
7) Department of Cardiology, Institute of Cardiovascular Diseases, Timișoara, Romania
8) Department of Pediatrics, IIIrd Pediatric Clinic, "Louis Túrcanu" Emergency Hospital for Children, Timișoara, Romania
9) Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Timișoara, Romania
10) PhD Student, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timișoara, Romania

Abstract

Introduction: Nowadays, the efforts regarding the prevention of type 2 diabetes mellitus (T2DM) are focused on decreasing overweight, obesity and visceral fat accumulation or percent body fat (PBF) risk factors. Aim: The aim of this study was to investigate whether use of bioelectrical impedance analysis (BIA) for measuring PBF could be a reliable method to improve risk assessment of T2DM. Participants and Methods: This cross-sectional study performed in 2016 enrolled 341 healthy medical students from western Romania, aged 18 to 44 years old, 143 females and 198 males. Anthropometric measurements, PBF (BIA machine InBody720®) determination, along with the Finnish Diabetes Risk (FINDRISC) assessment form, were performed for each participant. Results: 27.6% of the entire cohort was determined as being overweight and 12% obese. FINDRISC score showed that 5% from the entire group have a moderate to very high risk to develop T2DM in the following 10 years. FINDRISC score was correlated with waist-to-hip ratio (WHR) and PBF showing strong and positive correlations to both parameters (WHR: 0.477, p < 0.001; PBF: 0.561, p < 0.001). Discussion: Our results indicate a stronger correlation between FINDRISC score with PBF compared to FINDRISC and WHR for the entire cohort, and for both males and females. Conclusions: We recommend PBF measured by BIA (respecting quality control procedures) as a potential parameter to be considered into the risk model predictions for T2DM, as it is an accessible and affordable tool to use in the primary level of healthcare.

Keywords: type 2 diabetes mellitus, risk, FINDRISC, young, percent body fat.
intense physical activity within 24 hours. Containing drinks as well as to refrain themselves from bladder just before the test, to restrict alcohol and caffeine—least eight hours before having the measurements, emptying to the evaluation before midday, fasten overnight for at least 10 years. The samples included 6.6% of the population independent samples, in 1987 and 1992, and a follow-up team, in 2003, following a study population on two (FINDRISC) score was proposed by a Finish research and even directly to individual. Finnish Diabetes Risk (FINDRISC) score was proposed by a Finish research team, in 2003, following a study population on two independent samples, in 1987 and 1992, and a follow-up on 10 years. The samples included 6.6% of the population aged 25–64 years from North Karelia, Kuopio, and South-Western Finland, in 1987 (National Population Register), as well as from the Helsinki-Vantaa region, in 1992 (the FINRISK Studies). FINDRISC score prediction model expanded its utility abroad very fast, being used nowadays in many countries around Europe and beyond [19, 20].

Aim

The aim of this study was to investigate whether BIA for measuring body percent fat in a healthy medical students’ population could be a reliable method to improve risk estimation for developing T2DM.

Participants, Materials and Methods

This cross-sectional study performed in 2016 enrolled 341 young healthy medical voluntary students from “Victor Babeș” University of Medicine and Pharmacy, Timișoara, Romania, who agreed to join the study and gave written informed consent. All procedures were approved by “Victor Babeș” University of Medicine and Pharmacy Ethics Committee and complied with Declaration of Helsinki.

Exclusion criteria were represented by pregnant participants, those who had a history of major surgery on their extremities, malignancies, stage IV chronic kidney disease or renal replacement therapy, liver cirrhosis with ascites, heart failure with peripheral edema, or severe hypothyroidism, fever resulting from an active infection or inflammation, those receiving systemic steroid treatment, those suffering severe dehydration and those having chronic medication (e.g., statins, diuretics, and other medication that might affect water distribution in body).

Prior to the study, all participants were asked to present to the evaluation before midday, fasten overnight for at least eight hours before having the measurements, emptying bladder just before the test, to restrict alcohol and caffeine-containing drinks as well as to refrain themselves from intense physical activity within 24 hours.

Anthropometry

Anthropometric measurements were performed by a single examiner. Weight, height, WC and hip circumference were measured with footwear removed and in light clothing, using the same devices. BMI was calculated as weight (kg) divided by height squared (m²) and WHR according to the international criteria [21]. All measurements fulfilled quality control criteria.

PBF measurements

Abdominal VFA was measured using a tetrapol multifrequency BIA machine (InBody720®) for each individual. Operation environment was established according to recommendations: temperature range 5–35°C, relative humidity 30–75%, atmospheric pressure range 70–106 kPa [22, 23].

Coordinated by an experienced supervisor, subjects had to stand on the platform of the device with both arms apart from the body and both feet on the right spots on the platform. Both hands were held at a 45 degrees angle away from the body. Age and gender information was written into the machine software. The device uses 1, 5, 50, 250, 500 kHz, and 1 MHz frequencies to analyze intracellular and extracellular fluid values and water content. The electrodes connected to the footpads send a low electrical current through the body. The PBF was displayed, which was calculated from prediction equations provided by the manufacturer.

FINDRISC score assessment form

Participants were asked to fill in the FINDRISC score assessment form after all items were explained. Assistance was offered in case of need. The items (8) were the classic ones from FINDRISC T2DM risk assessment form: age, BMI, WC measured below ribs, daily physical activity, the frequency of eating vegetables, fruit or berries, frequency of taking medication for high blood pressure, history of hyperglycemia, familial history of diabetes (type 1 or type 2). Each answer to every item is assigned to weighted scores corresponding to the increase of risk for T2DM correlated to the value in the regression model of the original cohort. The final score is the sum of the scores from eight questions and ranges from 0 to 26.

The interpretation of the assessment form was performed after cumulating the total number of points corresponding to each item as following:

- Lower than 7: Low – estimated one in 100 will develop disease;
- 7–11: Slightly elevated – estimated one in 25 will develop disease;
- 12–14: Moderate – estimated one in six will develop disease;
- 15–20: High – estimated one in three will develop disease;
- Higher than 20: Very high – estimated one in two will develop disease [19].

Data analysis

Statistical analysis was performed using IBM *Statistical Package for the Social Sciences* (SPSS) Statistics 23 software and a two-tailed *p*-value < 0.05 was considered.
significant. To describe the cohort, data was tested for normal distribution. All 341 registrations were valid for the entire data. Results were compared between females and males using independent samples t-test. The expected value was calculated and a cut-off point of 5 was considered. Spearman’s correlation coefficients were applied to establish the correlations between variables.

Results

A total of 341 healthy medical students, adults, 143 females and 198 males, aged between 18 to 44 years old were recruited into the study. The anthropometric measures of the participants, along with their mean PBF values as determined by BIA are summarized in Table 1.

Table 1 – Cohort description

<table>
<thead>
<tr>
<th>Gender</th>
<th>Height [cm]</th>
<th>Weight [kg]</th>
<th>BMI [kg/m²]</th>
<th>Age [years]</th>
<th>Waist-to-hip ratio</th>
<th>Percent body fat [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (n=198)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>176</td>
<td>78.5</td>
<td>25.181</td>
<td>20</td>
<td>0.86</td>
<td>19.9</td>
</tr>
<tr>
<td>Percentage 25</td>
<td>173</td>
<td>67.75</td>
<td>22.057</td>
<td>19</td>
<td>0.82</td>
<td>14.3</td>
</tr>
<tr>
<td>Percentage 50</td>
<td>176</td>
<td>78.5</td>
<td>24.181</td>
<td>20</td>
<td>0.86</td>
<td>19.9</td>
</tr>
<tr>
<td>Percentage 75</td>
<td>180</td>
<td>90.25</td>
<td>28.608</td>
<td>22</td>
<td>0.89</td>
<td>26.45</td>
</tr>
<tr>
<td>Females (n=143)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage 25</td>
<td>159</td>
<td>51</td>
<td>19.362</td>
<td>19</td>
<td>0.77</td>
<td>23.8</td>
</tr>
<tr>
<td>Percentage 50</td>
<td>164</td>
<td>57</td>
<td>21.048</td>
<td>20</td>
<td>0.79</td>
<td>29</td>
</tr>
<tr>
<td>Percentage 75</td>
<td>168</td>
<td>67</td>
<td>24.447</td>
<td>22</td>
<td>0.82</td>
<td>33.5</td>
</tr>
</tbody>
</table>

BMI: Body mass index.

The variables that did not have normal distribution are presented using median and quartiles. There were no differences between males and females in mean ages (20 years old). 27.6% of the entire cohort was determined as being overweight and 12% obese (Figure 1).

![Figure 1 – Overweight and obesity (body mass index – BMI) distribution in the analyzed cohort (%).](image)

As for age–BMI correlation, cohort repartition was the following: one male and one female aged 20 and 18 years old, respectively, representing 0.6%, with morbid obesity (BMI>40 kg/m²); 39 individuals, representing 11.4%, with obesity (BMI between 30 and 40 kg/m²), subgroup with 17.9% of individuals aged 18 and 19 years old, 74.5% aged between 20 and 29 years old and 7.6% aged between 30 and 44 years old; 94 individuals, representing 26.7%, with overweight (BMI between 25 and 29.9 kg/m²), subgroup with 19.1% of individuals aged 18 and 19 years old, 70.2% aged between 20 and 29 years old and 10.7% aged between 30 and 44 years old. Gender distribution was the following: 13.9% of the female’s group presented overweight and 7% obesity, while 37.4% of the males presented overweight and 15.7% obesity. The median BMI was 25.18 kg/m² for males and 21.04 kg/m² for females (p-value 0.002). Generally, men had also a larger WHR: the calculated median WHR for males was 0.86, while for females 0.79 (p-value 0.015). Women had higher PBF (29% compared to 20.9%).

The FINDRISC score was distributed as shown in Figure 2.

![Figure 2 – FINDRISC score distribution in the whole group of students. FINDRISC: Finnish Diabetes Risk.](image)

76.2% of the students have a low risk (estimated one in 100 will develop disease), 18.8% have a slightly elevated risk (estimated one in 25 will develop disease), 2.9% have a moderate risk (estimated one in six will develop disease), 1.8% have a high risk (estimated one in three will develop disease) and 0.3% have a very high risk for developing T2DM in the following 10 years (estimated one in two will develop disease), according to the assessment form criteria. Individuals found with moderate and high risk were advised to measure fasting blood glucose and for subsequent follow-up.

We analyzed the correlation between FINDRISC score and WHR for the entire cohort (Table 2) as control and we found a statistical high and positive correlation – 0.477, p<0.001 (WHR is an item of FINDRISC score). Further, we analyzed the correlation between FINDRISC score and PBF for the whole group of students and it was a statistical higher and positive correlation than the one with WHR (0.561, p<0.001). As for the subgroup of both genders, the correlation between FINDRISC score and both WHR and PBF was direct, very strong and statistically significant (p<0.001). By comparison, males had a stronger correlation regarding FINDRISC score and both WHR and PBF than females.
Our results consisting of a young group of old (73% of the entire cohort), provided a challenge in and adolescents aged 5–19 were overweight or obese [7, 25]. A research in Romanian population results are significantly lower regarding both overweight and obesity [25]. A research in Romanian population subgroup 20–39 years old, published in 2016, found a prevalence of 27.2% for overweight and 20.9% for obesity overall. Males had a prevalence of overweight at 40.2% and of obesity at 20.7%, and overweight in females was lower at 14.8%, but obesity higher at 21.1%. Our results are however comparable to the prevalence of diabetes self-reported data from 2014 in Romania (4.8%) [29], being able to identify a percent of 5% from the entire group as having a moderate to very high risk to develop T2DM in the following 10 years. In a cross-sectional study conducted at Hashemite University in Zarqa, from Jordan, in 2014, it was reported a percentage of 66.9% students with low risk, 26.2% corresponding to a slightly elevated risk, 5.2% indicating a moderate risk and 1.8% at a high risk of diabetes. The minimum differences may be due to our relatively small cohort comparing to the one from Jordan, and also to ethnic particularities [30].

As the T2DM prevalence is growing among young population, teenagers and even children [31–33], we consider it is primordial to emphasize on preventive measures extended to these subgroup populations and to create tools or adapt the ones that already exist for adults. Among these measures, by controlling VFA, which may be improved by exercising and a healthy life style, consequences as adipose tissue dysfunction together with hypo adiponectinemia, chronic low-grade inflammation, lipolysis stimulation and releasing of excess glucoseogenic substrates to the liver can be reverted, as already determined by several research teams [34, 35].

Regarding VFA measurement, we preferred the use of BIA and PBF because of the real necessity in routine practice of a convenient and rapid to use tool. Also, there is already reported that taking into account only the overweight and obese individuals as being at risk for T2DM, an important proportion of non-obese (BMI<25 kg/m^2) persons that have a high PBF, and so a high risk for developing T2DM, is excluded [12]. An ultrasound measurement technique, also accessible in measuring the uncompressed subcutaneous adipose tissue thickness in children was proposed in 2017 by another research in Romania, with a good accuracy, however needing larger studies for validation [36].

BIA measurement of PBF is still controversial, and besides evident reasons like gender, age, disease state, level of fitness and ethnic backgrounds [15], two other explanations may be taken into account: first, 50 kHz of current can pass through extracellular and intracellular spaces, and hydration states can become a factor of error; second, standing position can influence the fluid distribution, and so the measurement of resistance [34, 35]. Some cross-sectional studies reported that BIA overestimates PBF [37, 38], whereas others have showed that BIA underestimates PBF [39, 40], by comparison to other methods considered as gold standard. Li et al. showed in 2003 in an interventional study on 189 subjects suggested that BIA provides a relatively accurate prediction of PBF in individuals with normal weight, overweight, or obesity after the end of weight-loss program, but less accurate.
prediction of PBF in obese individuals at baseline or weight change during the weight-loss intervention program [34]. Another study also using BIA for determining PBF, applied to 2336 Japanese men, in 2007, showed a decrease within one year of PBF in 53.1% of participants, increase in 33.2%, and no change in 13.7%. This data concluded that intervention strategies directed toward reduction of visceral fat could result in the reduction or disappearance of risks for atherosclerotic cardiovascular diseases [41]. As a general conclusion to almost all these works, BIA can be used as a reliable tool when DXA, MRI or CT are not available, especially within group estimations.

When taking into consideration that PBF is estimated in almost all risk prediction models for developing T2DM [FINDRISC, German DRS, Taiwanese MJ Longitudinal health check-up-based Population Database (MJLPD) DRS, Cambridge DRS, Framingham offspring study (FOS) DRS, SAHSNHW DRS, ARICNHW DRS I and II, Thai DRS, SAHSMA DRS, ARICAA DRS I, ARICAA DRS II and Indian DRS] just by a routine WC measurement, WHR and BMI calculation [20], we consider that adding PBF simply measured by BIA provides an important information for an improved risk assessment. This statement is sustained also by our findings related to the strong direct and positive correlation between FINDRISC score and PBF in the studied young healthy medical student population, both males and females. For validation, the analysis included a correlation of FINDRISC score with WHR, as WHR is a marker of abdominal obesity, which is already among FINDRISC score’s items. Interestingly, our study found a stronger correlation between FINDRISC score and PBF compared to FINDRISC score and WHR for the entire cohort, but also for both males and females.

Conclusions

Considering the worldwide increasing prevalence of T2DM, along with overweight and obesity, despite global efforts for its prevention, all additional measures, which could improve results, should be considered. This study emphasizes on the reliability of PBF measurement by simple BIA when assessing T2DM risk. Our outcomes support a significant correlation between FINDRISC assessment prediction model and PBF, even stronger than between FINDRISC and WHR, one of its items. Thus, we recommend PBF measured by BIA (respecting quality control procedures) as a potential parameter to be considered into the risk model predictions for T2DM as it is an accessible and affordable tool to use in the primary level of healthcare.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Authors’ contribution

Iulia-Elena Jurca-Simina and Iulius Juguănaru have equal contribution.

Acknowledgments

We are grateful to all students who agreed participating in this study. The present study has not received any funding.

References

Corresponding authors

Mirea-Ştefan Iurciuc, MD, PhD, Department of Cardiology/Preventive Medicine and Cardiovascular Rehabilitation, Angiogenesis Research Center, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania; Phone +40256–244 881, Fax +40256–220 484, e-mail: mircea@iurciuc@gmail.com

Emil Ungureanu, MD, PhD, Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Avenue, Sector 5, 050474 Bucharest, Romania; Phone +40726–724 290, e-mail: mdemil@gmail.com

Received: November 3, 2018

Accepted: June 23, 2019

